organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1,3-Benzothiazol-2-yl)guanidine

Shaaban Kamel Mohamed,^a Mahmoud A. A. El-Remaily,^b Ahmed M. Soliman,^b Atash V. Gurbanov^c and Seik Weng Ng^d*

^aChemistry & Environmental Science Division, School of Science, Manchester Metropolitan University, England, ^bDepartment of Chemistry, Sohag University, Sohag, Egypt, ^cDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malavsia

Correspondence e-mail: seikweng@um.edu.my

Received 21 February 2011; accepted 25 February 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.039: wR factor = 0.111: data-to-parameter ratio = 15.0.

In the title comound, C₈H₈N₄S, one of the two independent molecules is essentially planar (r.m.s. deviation = 0.025 Å), while the other is slightly buckled (r.m.s. deviation = 0.131 Å) with the guanidine unit bent out of the plane of the fused-ring system by 16.8 (1)°. In the crystal, intermolecular $N-H \cdots N$ hydrogen bonds between the two independent molecules give rise to a hydrogen-bonded dimer. Addtional weak intermolecular N-H···N hydrogen bonds connect these dimers into chains along [010]. An intramolecular N-H···N hydrogen bond is also observed in each independent molecule.

Related literature

For the synthesis, see: Dolzhenko et al. (2006).

Experimental

Crystal data

$C_8H_8N_4S$	$V = 3479.32 (18) \text{ Å}^3$
$M_r = 192.24$	Z = 16
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 10.2970 (3) Å	$\mu = 0.33 \text{ mm}^{-1}$
b = 10.0817 (3) Å	T = 295 K
c = 33.5158 (11) Å	$0.30 \times 0.30 \times 0.30$ mm

Data collection

Bruker APEXII diffractometer 35704 measured reflections 3996 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.111$	independent and constrained
S = 1.13	refinement
3996 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
267 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
8 restraints	

3345 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.026$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
N3-H31···N1	0.86(1)	2.00 (2)	2.679 (2)	134 (2)
$N3-H32\cdots N2^{i}$	0.86(1)	2.40(2)	3.228 (2)	161 (2)
$N4-H41\cdots N6$	0.86(1)	2.25 (1)	3.084 (3)	165 (3)
$N4-H42\cdots N8^{i}$	0.86(1)	2.50(2)	3.350 (3)	176 (2)
$N7 - H71 \cdot \cdot \cdot N5$	0.86(1)	2.03(2)	2.717 (3)	136 (2)
N8-H81···N2	0.86 (1)	2.24 (1)	3.096 (3)	177 (2)

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Manchester Metropolitan University, Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5214).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Dolzhenko, A. V., Chui, W.-K. & Dolzhenko, A. V. (2006). Synthesis, pp. 597-602

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o786 [doi:10.1107/S160053681100732X]

2-(1,3-Benzothiazol-2-yl)guanidine

S. K. Mohamed, M. A. A. El-Remaily, A. M. Soliman, A. V. Gurbanov and S. W. Ng

Comment

The title compound was synthesized as an intermediate for the synthesis of other heterocyclic compounds (Dolzhenko *et al.*, 2006). In the title comound, $C_8H_8N_4$, one of the two independent molecules of is essentially planar (r.m.s. deviation 0.025 Å) while the other is slightly buckled (r.m.s. deviation 0.131 Å) with the guanidine unit bent out of the plane of the fused-ring system by 16.8 (1)°. In the crystal a pair of intermolecular N-H…N hydrogen bonds between the two independent molecules give rise to a hydrogen-bonded dimer (Fig. 1). Additional weak intermolecular N-H…N hydrogen bonds connect these dimers into one-dimensional chains along [010].

Experimental

2-Aminothiophenol (0.050 mol) was dissolved in 10% sulfuric acid (50 ml) and to the solution was added cyanoduanidine (0.075 mol). The mixture was heated to give a clear solution. To the cool solution was added 50% sodium hydroxide (10 mol) to precipitate the product. X-ray quality crystals were recrystallized from ethanol in 90% yield. The synthesis was based on a reported procedure (Dolzhenko *et al.*, 2006).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 Å; $U_{iso}(H)$ 1.2 $U_{eq}(C)$] and were included in the refinement in a riding-model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.86±0.01 Å; the U_{iso}(H) values were refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of $C_8H_8N_4$ with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are denoted by dashed lines.

2-(1,3-Benzothiazol-2-yl)guanidine

Crystal data	
$C_8H_8N_4S$	F(000
$M_r = 192.24$	$D_{\rm x} = 1$
Orthorhombic, Pbca	Mo Ko
Hall symbol: -P 2ac 2ab	Cell p

F(000) = 1600 $D_x = 1.468 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9882 reflections

a = 10.2970 (3) Å	$\theta = 2.3 - 27.7^{\circ}$
<i>b</i> = 10.0817 (3) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 33.5158 (11) Å	T = 295 K
$V = 3479.32 (18) \text{ Å}^3$	Prism, colorless
Z = 16	$0.30 \times 0.30 \times 0.30 \text{ mm}$

Data collection

Bruker APEXII diffractometer	3345 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
φ and ω scans	$h = -13 \rightarrow 13$
35704 measured reflections	$k = -13 \rightarrow 13$
3996 independent reflections	$l = -43 \rightarrow 43$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.13	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0453P)^{2} + 1.2618P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3996 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
267 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
8 restraints	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.48382 (5)	0.66100 (5)	0.659730 (17)	0.05839 (16)
S2	0.84372 (5)	0.47427 (6)	0.472576 (17)	0.06418 (17)
N1	0.55487 (14)	0.42140 (14)	0.67760 (4)	0.0474 (3)
N2	0.64035 (14)	0.51382 (15)	0.61637 (5)	0.0485 (3)
N3	0.71411 (18)	0.29516 (18)	0.62708 (6)	0.0605 (4)
H31	0.6709 (19)	0.293 (2)	0.6491 (4)	0.064 (7)*
H32	0.756 (2)	0.2272 (16)	0.6184 (7)	0.073 (7)*
N4	0.77196 (19)	0.4128 (2)	0.57119 (5)	0.0649 (5)
H41	0.753 (3)	0.4781 (19)	0.5560 (6)	0.087 (9)*
H42	0.8259 (19)	0.3507 (18)	0.5657 (7)	0.071 (7)*
N5	0.67826 (16)	0.63000 (15)	0.43811 (5)	0.0537 (4)
N6	0.66455 (16)	0.61327 (15)	0.51004 (5)	0.0534 (4)
N7	0.47131 (19)	0.70197 (19)	0.48350 (6)	0.0612 (4)
H71	0.505 (2)	0.692 (3)	0.4602 (4)	0.079 (9)*

H72	0.3919 (12)	0.722 (2)	0.4882 (7)	0.074 (7)*
N8	0.5036 (2)	0.68148 (19)	0.55135 (6)	0.0649 (5)
H81	0.539 (2)	0.635 (2)	0.5699 (5)	0.066 (7)*
H82	0.4247 (12)	0.706 (3)	0.5554 (7)	0.082 (8)*
C1	0.47271 (17)	0.46403 (18)	0.70777 (6)	0.0477 (4)
C2	0.4344 (2)	0.3899 (2)	0.74069 (6)	0.0609 (5)
H2	0.4661	0.3043	0.7443	0.073*
C3	0.3497 (2)	0.4436 (3)	0.76785 (7)	0.0682 (6)
H3	0.3247	0.3939	0.7899	0.082*
C4	0.3009 (2)	0.5704 (2)	0.76293 (7)	0.0690 (6)
H4	0.2434	0.6047	0.7817	0.083*
C5	0.3367 (2)	0.6461 (2)	0.73061 (7)	0.0626 (5)
Н5	0.3037	0.7312	0.7272	0.075*
C6	0.42309 (18)	0.59256 (18)	0.70318 (6)	0.0504 (4)
C7	0.56907 (17)	0.51333 (16)	0.65055 (5)	0.0448 (4)
C8	0.70785 (17)	0.40623 (18)	0.60589 (6)	0.0488 (4)
C9	0.75591 (18)	0.57694 (17)	0.40817 (5)	0.0495 (4)
C10	0.7460 (2)	0.6048 (2)	0.36749 (6)	0.0604 (5)
H10	0.6833	0.6637	0.3582	0.072*
C11	0.8292 (2)	0.5445 (2)	0.34137 (7)	0.0640 (6)
H11	0.8221	0.5624	0.3142	0.077*
C12	0.9238 (2)	0.4574 (2)	0.35448 (7)	0.0685 (6)
H12	0.9791	0.4175	0.3361	0.082*
C13	0.9367 (2)	0.4293 (2)	0.39439 (7)	0.0697 (6)
H13	1.0006	0.3712	0.4033	0.084*
C14	0.85219 (19)	0.48948 (19)	0.42113 (6)	0.0545 (5)
C15	0.71308 (18)	0.58623 (17)	0.47312 (6)	0.0494 (4)
C16	0.5469 (2)	0.66392 (17)	0.51381 (6)	0.0529 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0643 (3)	0.0367 (2)	0.0742 (3)	0.0069 (2)	0.0233 (2)	0.0041 (2)
S2	0.0636 (3)	0.0691 (3)	0.0598 (3)	0.0202 (3)	-0.0057 (2)	0.0084 (2)
N1	0.0456 (8)	0.0428 (7)	0.0537 (8)	0.0032 (6)	-0.0053 (6)	0.0014 (6)
N2	0.0488 (8)	0.0429 (8)	0.0537 (8)	0.0055 (6)	0.0022 (7)	-0.0031 (6)
N3	0.0647 (11)	0.0507 (9)	0.0660 (11)	0.0193 (8)	-0.0024 (9)	-0.0044 (8)
N4	0.0678 (11)	0.0718 (12)	0.0551 (10)	0.0255 (10)	0.0021 (8)	-0.0080 (9)
N5	0.0621 (9)	0.0436 (8)	0.0554 (9)	0.0028 (7)	-0.0127 (7)	-0.0002 (7)
N6	0.0627 (10)	0.0432 (8)	0.0544 (9)	0.0061 (7)	-0.0108 (7)	-0.0043 (7)
N7	0.0544 (10)	0.0582 (10)	0.0710 (12)	0.0035 (8)	-0.0113 (9)	-0.0030 (9)
N8	0.0742 (13)	0.0538 (10)	0.0667 (12)	0.0118 (9)	-0.0006 (10)	-0.0019 (8)
C1	0.0418 (9)	0.0473 (9)	0.0539 (10)	-0.0037 (7)	-0.0055 (7)	-0.0004 (8)
C2	0.0602 (12)	0.0626 (12)	0.0601 (12)	-0.0020 (10)	-0.0054 (9)	0.0120 (9)
C3	0.0689 (14)	0.0793 (15)	0.0564 (12)	-0.0138 (12)	0.0052 (10)	0.0083 (11)
C4	0.0622 (12)	0.0731 (14)	0.0716 (14)	-0.0145 (11)	0.0189 (11)	-0.0118 (11)
C5	0.0596 (12)	0.0514 (11)	0.0768 (14)	-0.0064 (9)	0.0183 (10)	-0.0085 (10)
C6	0.0478 (9)	0.0437 (9)	0.0596 (11)	-0.0064 (8)	0.0075 (8)	-0.0032 (8)

C7	0.0410 (8)	0.0382 (8)	0.0551 (10)	0.0016 (7)	-0.0019 (7)	-0.0037 (7)
C8	0.0435 (9)	0.0503 (10)	0.0526 (10)	0.0070 (8)	-0.0115 (8)	-0.0111 (8)
C9	0.0520 (10)	0.0376 (8)	0.0588 (10)	-0.0089 (8)	-0.0089 (8)	0.0002 (8)
C10	0.0686 (12)	0.0525 (11)	0.0602 (11)	-0.0076 (10)	-0.0137 (10)	0.0056 (9)
C11	0.0776 (14)	0.0571 (12)	0.0571 (12)	-0.0192 (11)	-0.0018 (10)	0.0028 (9)
C12	0.0769 (15)	0.0618 (12)	0.0669 (13)	-0.0092 (11)	0.0149 (11)	0.0024 (10)
C13	0.0686 (13)	0.0658 (13)	0.0748 (14)	0.0097 (11)	0.0105 (11)	0.0092 (11)
C14	0.0559 (11)	0.0475 (10)	0.0600 (11)	-0.0040 (8)	-0.0032 (9)	0.0054 (8)
C15	0.0543 (10)	0.0355 (8)	0.0583 (10)	-0.0008 (7)	-0.0134 (8)	-0.0021 (7)
C16	0.0625 (11)	0.0325 (8)	0.0637 (11)	-0.0023 (8)	-0.0099 (9)	-0.0051 (8)

Geometric parameters (Å, °)

SIC6	1.7285 (19)	N8—H81	0.860 (10)
S1—C7	1.7555 (17)	N8—H82	0.861 (10)
S2—C14	1.733 (2)	C1—C2	1.390 (3)
S2—C15	1.7562 (19)	C1—C6	1.401 (3)
N1—C7	1.305 (2)	C2—C3	1.372 (3)
N1—C1	1.387 (2)	C2—H2	0.9300
N2—C8	1.335 (2)	C3—C4	1.383 (3)
N2—C7	1.360 (2)	С3—Н3	0.9300
N3—C8	1.328 (3)	C4—C5	1.375 (3)
N3—H31	0.863 (9)	C4—H4	0.9300
N3—H32	0.860 (10)	C5—C6	1.389 (3)
N4—C8	1.339 (3)	С5—Н5	0.9300
N4—H41	0.855 (10)	C9—C10	1.396 (3)
N4—H42	0.857 (10)	C9—C14	1.396 (3)
N5—C15	1.304 (2)	C10—C11	1.368 (3)
N5—C9	1.390 (3)	C10—H10	0.9300
N6—C16	1.321 (3)	C11—C12	1.382 (3)
N6—C15	1.362 (2)	C11—H11	0.9300
N7—C16	1.336 (3)	C12—C13	1.374 (3)
N7—H71	0.862 (10)	C12—H12	0.9300
N7—H72	0.856 (10)	C13—C14	1.388 (3)
N8—C16	1.347 (3)	C13—H13	0.9300
C6—S1—C7	89.43 (9)	C5—C6—C1	121.36 (18)
C14—S2—C15	89.54 (9)	C5—C6—S1	129.38 (16)
C7—N1—C1	110.79 (15)	C1—C6—S1	109.25 (14)
C8—N2—C7	119.96 (16)	N1—C7—N2	130.40 (16)
C8—N3—H31	117.0 (16)	N1—C7—S1	115.11 (13)
C8—N3—H32	121.0 (16)	N2—C7—S1	114.48 (12)
H31—N3—H32	122 (2)	N3—C8—N2	124.73 (18)
C8—N4—H41	116.5 (19)	N3—C8—N4	118.86 (18)
C8—N4—H42	118.1 (17)	N2—C8—N4	116.41 (18)
H41—N4—H42	125 (2)	N5—C9—C10	125.84 (18)
C15—N5—C9	111.18 (16)	N5-C9-C14	115.27 (17)
C16—N6—C15	120.07 (16)	C10-C9-C14	118.89 (19)
C16—N7—H71	115.0 (18)	C11—C10—C9	119.3 (2)
C16—N7—H72	118.9 (17)	C11-C10-H10	120.3

H71—N7—H72	125 (2)	С9—С10—Н10	120.3
C16—N8—H81	117.6 (16)	C10-C11-C12	121.4 (2)
C16—N8—H82	119.8 (17)	C10-C11-H11	119.3
H81—N8—H82	116 (2)	C12—C11—H11	119.3
N1—C1—C2	125.81 (18)	C13—C12—C11	120.6 (2)
N1—C1—C6	115.41 (16)	С13—С12—Н12	119.7
C2—C1—C6	118.76 (18)	C11—C12—H12	119.7
C3—C2—C1	119.6 (2)	C12—C13—C14	118.5 (2)
С3—С2—Н2	120.2	C12—C13—H13	120.7
C1—C2—H2	120.2	C14—C13—H13	120.7
C2—C3—C4	121.1 (2)	C13—C14—C9	121.3 (2)
С2—С3—Н3	119.5	C13—C14—S2	129.41 (17)
С4—С3—Н3	119.5	C9—C14—S2	109.25 (15)
C5—C4—C3	120.6 (2)	N5-C15-N6	130.46 (18)
С5—С4—Н4	119.7	N5-C15-S2	114.76 (15)
C3—C4—H4	119.7	N6—C15—S2	114.79 (13)
C4—C5—C6	118.5 (2)	N6—C16—N7	124.9 (2)
С4—С5—Н5	120.7	N6—C16—N8	116.38 (18)
С6—С5—Н5	120.7	N7—C16—N8	118.7 (2)
C7—N1—C1—C2	178.46 (18)	C15—N5—C9—C10	-178.95 (18)
C7—N1—C1—C6	0.1 (2)	C15—N5—C9—C14	0.4 (2)
N1—C1—C2—C3	-178.35 (19)	N5-C9-C10-C11	-179.80 (18)
C6—C1—C2—C3	-0.1 (3)	C14—C9—C10—C11	0.9 (3)
C1—C2—C3—C4	0.4 (3)	C9—C10—C11—C12	-0.6 (3)
C2—C3—C4—C5	-0.2 (4)	C10-C11-C12-C13	-0.1 (3)
C3—C4—C5—C6	-0.2 (3)	C11-C12-C13-C14	0.5 (4)
C4—C5—C6—C1	0.5 (3)	C12—C13—C14—C9	-0.1 (3)
C4—C5—C6—S1	178.91 (17)	C12—C13—C14—S2	179.90 (18)
N1—C1—C6—C5	178.08 (17)	N5-C9-C14-C13	-179.97 (19)
C2-C1-C6-C5	-0.4 (3)	C10—C9—C14—C13	-0.6 (3)
N1—C1—C6—S1	-0.6 (2)	N5—C9—C14—S2	0.0 (2)
C2-C1-C6-S1	-179.04 (15)	C10—C9—C14—S2	179.40 (14)
C7—S1—C6—C5	-177.9 (2)	C15—S2—C14—C13	179.7 (2)
C7—S1—C6—C1	0.65 (14)	C15—S2—C14—C9	-0.30 (14)
C1—N1—C7—N2	179.79 (18)	C9—N5—C15—N6	179.41 (18)
C1—N1—C7—S1	0.39 (19)	C9—N5—C15—S2	-0.6 (2)
C8—N2—C7—N1	1.6 (3)	C16—N6—C15—N5	19.2 (3)
C8—N2—C7—S1	-178.99 (13)	C16—N6—C15—S2	-160.82 (14)
C6—S1—C7—N1	-0.63 (15)	C14—S2—C15—N5	0.53 (15)
C6—S1—C7—N2	179.88 (14)	C14—S2—C15—N6	-179.47 (15)
C7—N2—C8—N3	-1.5 (3)	C15—N6—C16—N7	-5.5 (3)
C7—N2—C8—N4	177.80 (17)	C15—N6—C16—N8	176.74 (17)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N3—H31…N1	0.86 (1)	2.00 (2)	2.679 (2)	134 (2)
N3—H32…N2 ⁱ	0.86 (1)	2.40 (2)	3.228 (2)	161 (2)
N4—H41…N6	0.86 (1)	2.25 (1)	3.084 (3)	165 (3)

N4—H42…N8 ⁱ	0.86 (1)	2.50 (2)	3.350 (3)	176 (2)
N7—H71…N5	0.86 (1)	2.03 (2)	2.717 (3)	136 (2)
N8—H81…N2	0.86 (1)	2.24 (1)	3.096 (3)	177 (2)
Symmetry codes: (i) $-x+3/2$, $y-1/2$, z.				

Fig. 1